An Improved Gradient Projection-based Decomposition Technique for Support Vector Machines
نویسنده
چکیده
In this paper we propose some improvements to a recent decomposition technique for the large quadratic program arising in training Support Vector Machines. As standard decomposition approaches, the technique we consider is based on the idea to optimize, at each iteration, a subset of the variables through the solution of a quadratic programming subproblem. The innovative features of this approach consist in using a very effective gradient projection method for the inner subproblems and a special rule for selecting the variables to be optimized at each step. These features allow to obtain promising performance by decomposing the problem into few large subproblems instead of many small subproblems as usually done by other decomposition schemes. We improve this technique by introducing a new inner solver and a simple strategy for reducing the computational cost of each iteration. We evaluate the effectiveness of these improvements by solving large-scale benchmark problems and by comparison with a widely used decomposition package.
منابع مشابه
DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA “G. VITALI” Gradient Projection Methods for Quadratic Programs and Applications in Training Support Vector Machines
Gradient projection methods based on the Barzilai-Borwein spectral steplength choices are considered for quadratic programming problems with simple constraints. Well known nonmonotone spectral projected gradient methods and variable projection methods are discussed. For both approaches the behavior of different combinations of the two spectral steplengths is investigated. A new adaptive stpleng...
متن کاملGradient projection methods for quadratic programs and applications in training support vector machines
Gradient projection methods based on the Barzilai-Borwein spectral steplength choices are considered for quadratic programming problems with simple constraints. Well-known nonmonotone spectral projected gradient methods and variable projection methods are discussed. For both approaches the behavior of different combinations of the two spectral steplengths is investigated. A new adaptive steplen...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملA Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Manag. Science
دوره 3 شماره
صفحات -
تاریخ انتشار 2006